1,695 research outputs found

    Measuring CMB polarisation with the Planck HFI

    Full text link
    We describe the Planck HFI design and expected performances for measuring CMB polarisation.Comment: Proceedings of the Pol2001 "Astrophysical Polarised Backgrounds" conference, Bologna, 9-12 october 200

    Circular scans for CMB anisotropy observation and analysis

    Get PDF
    A number of experiments for measuring anisotropies of the Cosmic Microwave Background use scanning strategies in which temperature fluctuations are measured along circular scans on the sky. It is possible, from a large number of such intersecting circular scans, to build two-dimensional sky maps for subsequent analysis. However, since instrumental effects --- especially the excess low-frequency 1/f noise --- project onto such two-dimensional maps in a non-trivial way, we discuss the analysis approach which focuses on information contained in the individual circular scans. This natural way of looking at CMB data from experiments scanning on the circles combines the advantages of elegant simplicity of Fourier series for the computation of statistics useful for constraining cosmological scenarios,and superior efficiency in analysing and quantifying most of the crucial instrumental effects.Comment: 10 pages, 5 figures (.ps), submitted to MNRA

    Bayesian blind component separation for Cosmic Microwave Background observations

    Full text link
    We present a technique for the blind separation of components in CMB data. The method uses a spectral EM algorithm which recovers simultaneously component templates, their emission law as a function of wavelength, and noise levels. We test the method on Planck HFI simulated observations featuring 3 astrophysical components.Comment: 15 pages, 5 figures, to appear in the Proceedings of the MAXENT 2001 international worksho

    Multi-Detector Multi-Component spectral matching and applications for CMB data analysis

    Full text link
    We present a new method for analyzing multi--detector maps containing contributions from several components. Our method, based on matching the data to a model in the spectral domain, permits to estimate jointly the spatial power spectra of the components and of the noise, as well as the mixing coefficients. It is of particular relevance for the analysis of millimeter--wave maps containing a contribution from CMB anisotropies.Comment: 15 pages, 7 Postscript figures, submitted to MNRA

    Independent Component analysis of the Cosmic Microwave Background

    Get PDF
    This paper presents an application of ICA to astronomical imaging. A first section describes the astrophysical context and motivates the use of source separation ideas. A second section describes our approach to the problem: the use of a noisy Gaussian stationary model. This technique uses spectral diversity and take explicitly into account contamination by additive noise. Preliminary and extremely encouraging results on realistic synthetic signals and on real data will be presented at the conferenc

    Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

    Get PDF
    The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications.Comment: 19 pages, 15 figures, accepted to Astronomy and Astrophysic
    corecore